Bilad Alrafidain University College Electric Power Techniques Engineering Department Control Systems Analysis Fourth Stage Academic Year 2020 - 2021

Lecture Nine

Stability Analysis

Assistant Lecturer. Ibrahim Ismail

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Routh-Hurwitz stability criterion: Special Cases

Case One: If a first-column term in any row is zero, but the remaining terms are not zero or there is no remaining term, then the zero term is replaced by a very small positive number $\varepsilon > 0$ and the rest of the array is evaluated.

Routh-Hurwitz stability criterion: Special Cases

Example 1. Consider the following characteristic equation:

 $P(S) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$

$$b_1 = \frac{2*2-1*4}{2} = 0, b_1 = \varepsilon, \varepsilon > 0$$

$$c_1 = \frac{4 * \varepsilon - 2 * 6}{\varepsilon} = 4 - \frac{12}{\varepsilon} \approx \frac{12}{\varepsilon} < 0$$
$$d_1 = \frac{6 * c_1 - 10 * \varepsilon}{c_1} = 6 - \frac{10 * \varepsilon}{c_1} \approx 6 > 0$$

*C*₁

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Routh-Hurwitz array:					
s ⁵	1	2	11		
<i>s</i> ⁴	2	4	10		
s ³	b_1	6	0		
s ²	<i>C</i> ₁	10	0		
<i>s</i> ¹	d_1	0	0		
s ⁰	10	0	0		

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Routh-Hurwitz stability criterion: Special Cases

 $P(S) = s^5 + 2s^4 + 2s^3 + 4s^2 + 11s + 10 = 0$

s ⁵	1	2	11	There are two sign changes in the first column due to the large negative number calculated for c_1
<i>S</i> ⁴	2	4	10	Thus, the system is unstable because two roots lie in the right half of the plane.
s ³	Е	6	0	
s ²	$c_1 {=} 4 - \frac{12}{\varepsilon} \approx \frac{12}{\varepsilon} < 0$	10	0	
<i>s</i> ¹	$d_1 = 6 - \frac{10 * \varepsilon}{c_1} \approx 6 > 0$	0	0	
s ⁰	10	0	0	

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Routh-Hurwitz stability criterion: Special Cases

Case Two: If all the coefficients in any derived row are zero, it indicates: There are roots of equal magnitude lying radially opposite in the *s-plane*, that is, two real roots with equal magnitudes and opposite signs and/or two conjugate imaginary roots. Hence, the system is **unstable**.

However, the evaluation of the rest of the array can be continued to obtain the pole/poles on the right hand side of *s-plane* by forming an auxiliary polynomial with the coefficients of the last row and by using the coefficients of the derivative of this polynomial in the next row.

Routh-Hurwitz stability criterion: Special Cases

Example 2. Consider the following characteristic equation:

 $P(S) = s^3 + s^2 + 4s + 4 = 0$

The terms in the s^1 row are all zero. (Note that such a case occurs only in an odd numbered row.) The auxiliary polynomial is then formed from the coefficients of the s^2 row. The auxiliary polynomial P(s) is

 $P_y(s) = s^2 + 4$

Solving $P_y(s)$ leads $s^1 = j2 \& s^2 = -j2$ two complex conjugate roots on the imaginary axis. Thus, the system is **unstable**.

The evaluation of the rest of the array results will be :
$$\frac{dP_y(s)}{ds} = 2s$$

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Routh-Hurwitz array:

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Stability of Linear Feedback Systems by Routh-Hurwitz Stability Criterion

Example 3. Determine its stability with Routh-Hurwitz stability criterion for the following system.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Stability of Linear Feedback Systems by Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion can be used to determine the effects of changing one or two parameters of a system by examining the values that cause instability.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Stability of Linear Feedback Systems by Routh-Hurwitz Stability Criterion

Example 3. Consider the system shown in Figure. Determine the range of *K* for stability.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Stability of Linear Feedback Systems by Routh-Hurwitz Stability Criterion

Example 4. Consider the system shown in Figure. Determine the range of *K* for stability.

