Bilad Alrafidain University College Electric Power Techniques Engineering Department

Control Systems Analysis

Fourth Stage

Academic Year 2020 - 2021

Lecture Twelve

Root Locus Method

Assistant Lecturer. Ibrahim Ismail

Bilad Alrafidain University College Electric Power Techniques Eng. Dep. Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

The **root locus** is a graphical representation in s-domain and it is symmetrical about the real axis. Because the open loop poles and zeros exist in the s-domain having the values either as real or as complex conjugate pairs.

Example 1: A simplified form of the open-loop transfer function of an airplane with an autopilot in the longitudinal mode is:

- a) Sketch the root-locus plot for the system.
- b) Find the range of gain K for closed loop system stability

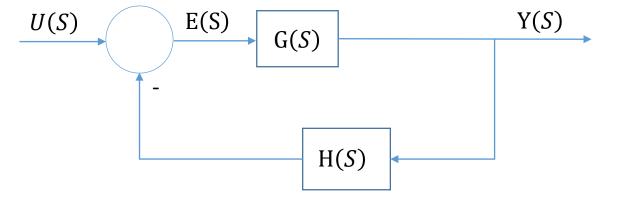
$$G(S)H(S) = \frac{K(S+1)}{S(S-1)(S^2+4S+16)}$$

$$\frac{Y(S)}{U(S)} = \frac{G(S)}{1 + G(S)H(S)}$$
 Transfer function

$$P(S) = 1 + G(S)H(S) = 0$$
 Characteristic equation

$$G(S)H(S) = -1$$

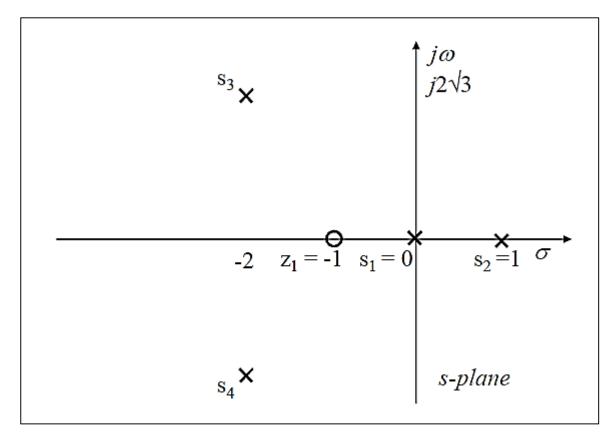
$$G(S)H(S) = \frac{K(S+1)}{S(S-1)(S^2+4S+16)}$$
 Open Loop Transfer function



1. Locate the poles and zeros of G(s)H(s) on the s plane: The first step in constructing a root-locus plot is to locate the open-loop poles G(s)H(s);

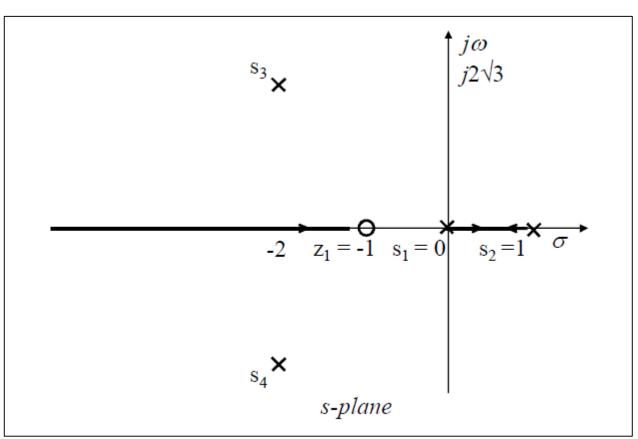
$$S_1 = 0, S_2 = 1 \text{ and } S_{3,4} = -2 \pm j2\sqrt{3}$$

The open-loop poles G(s)H(s); $Z_1 = -1$



2. Determine the root loci on the real axis: Root loci exist on the real axis between 1 and 0 and between -1 and $-\infty$.

$$G(S)H(S) = \frac{K(S+1)}{S(S-1)(S^2+4S+16)}$$



3. Determine the asymptotes of root loci: Since n=4 and m=1 there are three asymptotes whose angles can be determined as

The angle of asymptote:
$$\phi_j = \frac{\pm 180^\circ (2K+1)}{n-m}$$
, $K = 0,1,2,...$

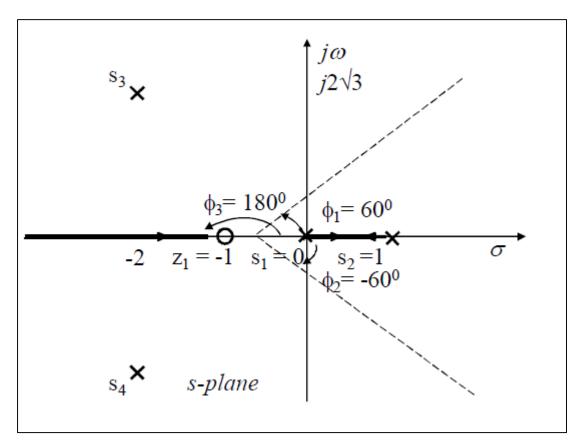
For
$$k = 0 : \emptyset_1 = 60^{\circ}$$
, and $\emptyset_2 = -60^{\circ}$

For
$$k = 1 \, \emptyset_3 = \pm 180^{\circ}$$

All the asymptotes intersect on the real axis at:

$$\sigma = -\frac{\sum_{j=1}^{n} p_j - \sum_{i=1}^{m} z_i}{n - m}$$

$$\sigma = -\frac{\left(0 - 1 + 2 + j2\sqrt{3} + 2 - j2\sqrt{3}\right) - (1)}{4 - 1} = -\frac{2}{3}$$



4. Find the breakaway and break-in points: Depending on the characteristic equation P(s).

The characteristic equation is given by :
$$P(S) = 1 + K \frac{(S+1)}{S(S-1)(S^2+4S+16)} = 0$$

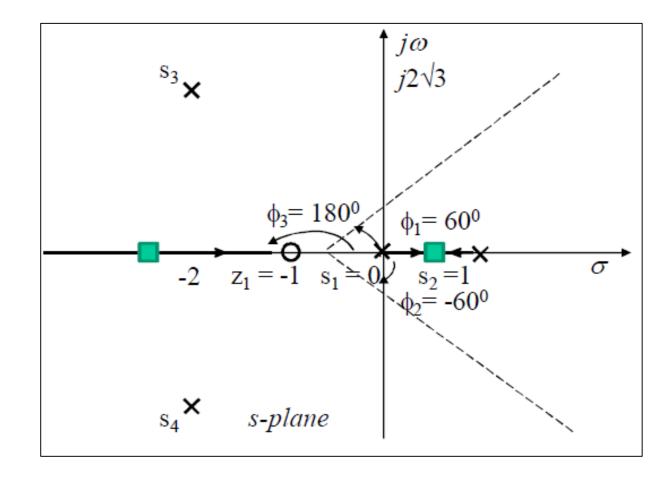
$$K = -\frac{S(S-1)(S^2 + 4S + 16)}{(S+1)}$$

By differentiating K with respect to S, we get:

$$\frac{dK}{dS} = -\frac{3S^4 + 10S^3 + 21S^2 + 24S - 16}{(S+1)^2} = 0 \Rightarrow \begin{cases} S_1 = 0.45 \\ S_2 = -2.26 \\ S_{3,4} = -0.76 \pm j2.16 \end{cases}$$

Points $S_1 = 0.45$ and $S_2 = -2.26$ are on root loci on the real axis. Hence, these points are actual breakaway and break-in points, respectively. Points $S_{3,4} = -0.76 \pm j2.16$ do not satisfy the angle condition. Hence, they are neither breakaway nor break-in points.

 $S_1 = 0.45$ is breakaway point and $S_2 = -2.26$ break-in point.



5. Determine the angle of departure (angle of arrival) of the root locus from a complex pole (at a complex zero).

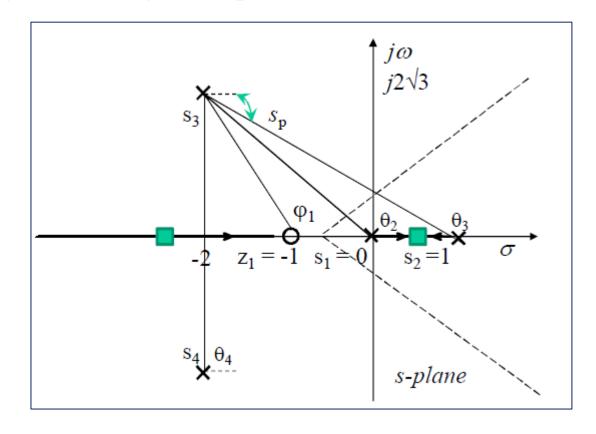
For the open-loop poles G(s)H(s) at $S_{3,4}=-2\pm j2\sqrt{3}$, the angle of departure θ is

Angle of departure from a complex pole

$$\theta = 180^{\circ} - \sum_{j=1}^{n-1} \theta_j + \sum_{i=1}^{m} \varphi_i$$

$$\theta = 180^{\circ} - 120^{\circ} - 130.5^{\circ} - 90^{\circ} + 106^{\circ}$$

$$\theta = -54.5^{\circ}$$



6. Find the points where the root loci may cross the imaginary axis: letting $s = j\omega$ in the characteristic equation, equating both the real part and the imaginary part to zero, and solving for ω and K.

$$P(S) = 1 + K \frac{(S+1)}{S(S-1)(S^2 + 4S + 16)} = 0$$

$$P(S) = S^4 + 3S^3 + 12S^2 + KS - 16S + K = 0$$
 letting $S = j\omega$ in the characteristic equation

$$P(S)\Big|_{S=j\omega} = 1 + G(j\omega)H(j\omega) = 0$$

$$(j\omega)^4 + 3(j\omega)^3 + 12(j\omega)^2 + K(j\omega) - 16(j\omega) + K = 0$$

$$\omega^4 - 3j\omega^3 - 12\omega^2 + Kj\omega - 16j\omega + K = 0$$

Equating the Imaginary parts which contains j with zero, then Equating the Real Parts which not contains j with zero and solving for ω and K.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

$$\omega^{4} - 3j\omega^{3} - 12\omega^{2} + Kj\omega - 16j\omega + K = 0$$

$$-3j\omega^{3} + (K - 16)j\omega = 0 \Rightarrow 3j\omega^{3} = (K - 16)j\omega$$

$$3\omega^{2} = K - 16 \Rightarrow \omega^{2} = \frac{K - 16}{3} \dots (1)$$

$$\omega^{4} - 12\omega^{2} + K = 0 \quad \text{Then} \quad \omega^{4} - 12\left(\frac{K - 16}{3}\right) + K = 0 \Rightarrow \omega^{4} - 4K + 64 + K = 0 \Rightarrow \omega^{4} + 64 - 3K = 0$$

$$\omega^{4} = 3K - 64 \Rightarrow \omega^{2} = \sqrt{3K - 64} \dots (2) \quad \text{Now, let's equating the above equations (1) and (2) with each other.}$$

$$\frac{K - 16}{3} = \sqrt{3K - 64} \Rightarrow 3K - 64 = \left(\frac{K - 16}{3}\right)^{2}$$
 Then
$$3K - 64 = \frac{K^{2} - 32K + 256}{9}$$
$$27K - 576 = K^{2} - 32K + 256 \Rightarrow K^{2} - 59K + 832 = 0$$
 Then
$$K_{1} = 35.7 \& K_{2} = 23.3$$

The crossing points on the imaginary axis are thus:

For $K_1 = 35.7 \& K_2 = 23.3$ from equation (1) we find that $\omega_1 = \pm j2.56 \& \omega_2 = \pm j1.56$

Bilad Alrafidain University College Electric Power Techniques Eng. Dep.

Control Systems Analysis, 4'th Stage Assistant Lecturer. Ibrahim Ismail

Root Locus Method

From step 6, the system is stable for 23.3 < K < 35.7. Otherwise, it is unstable. Thus, the system is

conditionally stable.

